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Abstract
Two formulae expressing explicitly the derivatives and moments of Al-
Salam–Carlitz I polynomials of any degree and for any order in terms of
Al-Salam–Carlitz I themselves are proved. Two other formulae for the
expansion coefficients of general-order derivatives D

p
q f (x), and for the

moments x�D
p
q f (x), of an arbitrary function f (x) in terms of its original

expansion coefficients are also obtained. Application of these formulae for
solving q-difference equations with varying coefficients, by reducing them to
recurrence relations in the expansion coefficients of the solution, is explained.
An algebraic symbolic approach (using Mathematica) in order to build and
solve recursively for the connection coefficients between Al-Salam–Carlitz I
polynomials and any system of basic hypergeometric orthogonal polynomials,
belonging to the q-Hahn class, is described.

PACS numbers: 02.30.Gp, 02.30.Nw, 02.30.Hq
Mathematics Subject Classification: 33C25, 33D45

1. Introduction

The so-called q-polynomials constitute a very important and interesting set of special functions
and especially of orthogonal polynomials. In 1884, Markov introduced a family of q-
polynomials. Later, in 1949, Hahn introduced the q-classical orthogonal polynomials, the
q-derivatives of which are also orthogonal. This is analogous to the case of classical
orthogonal polynomials, the derivatives of which are also orthogonal. In 1985, Andrews
and Askey continued the work of Hahn. A collection of the formulae of the hypergeometric
orthogonal polynomials which appear in the so-called Askey-scheme, as well as their q-
analogues, can be found in a paper of Koekoek and Swarttouw (1998). Lately, there has
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been an increasing interest in the q-orthogonal polynomials. This is due to their numerous
applications in several areas of mathematics, e.g., continued fractions, Eulerian series, theta
functions, elliptic functions, etc (see Andrews (1986) and Fine (1988)), quantum groups
and algebras (see Koornwinder (1990, 1994) and Vilenkin and Klimyk (1992)), discrete
mathematics (combinatorics, graph theory), coding theory, among others (see also Gasper and
Rahman (1990)). There is also a connection between the representation theory of quantum
algebras (Clebsch–Gordan coefficients, 3j and 6j symbols), which play an important role in
physical applications, and the q-orthogonal polynomials (see Álvarez-Nodarse et al (1997)
and references there in).

The expansion of a given function as a series in classical orthogonal polynomials is a
matter of great interest in applied mathematics and mathematical physics. This is particularly
true for the connection problem between any two families of classical orthogonal polynomials.
The study of such a problem has attracted a lot of interest in the last few years. Special emphasis
was given to the classical continuous orthogonal polynomials (Hermite, Laguerre, Jacobi and
Bessel) and the discrete cases (Charlier, Meixner, Kravchuk and Hahn). Ronveaux et al
(1995), Godoy et al (1997) and Area et al (1998) have developed a recurrent method, called
Na ViMa algorithm, for solving the connection problem for all families of classical orthogonal
polynomials, as well as some special kind of linearization problem and used it for solving
different problems related with the associated Sobolev-type polynomials, etc (see Godoy
et al (1998a, 1998b)). Let us point out that there are very similar algorithms for finding
the recurrence relations for both connection and linearization coefficients due to Lewanowicz
(1996a, 1996b, 1997, 2002). Also, different algorithms for solving the connection problem
for the four families of classical orthogonal polynomials of continuous variable (Laguerre,
Hermite, Jacobi and Bessel) are presented by Doha (2003, 2004a, 2004b) and Doha and Ahmed
(2004), respectively, and for the discrete cases (Charlier, Meixner, Kravchuk and Hahn) by
Doha and Ahmed (in press and submitted).

Also, the construction of recurrence relations for the coefficients of the Fourier
series expansions with respect to the q-classical orthogonal polynomials are presented by
Lewanowicz (2003a, 2003b), Lewanowicz et al (2000) and Lewanowicz and Woźzny (2001).
A great importance of the connection and linearization coefficients has appeared in Álvarez-
Nodarse and Ronveaux (1996), Álvarez-Nodarse et al (1999, 2001), Area et al (1999), Gasper
and Rahman (1990), Lewanowicz (1998, 2000), Szwarc (1996), Ismail and Simeonov (2001).

Up to now, and to the best of our knowledge, explicit formulae for the expansion
coefficients of a general-order q-derivatives of an arbitrary function and for the evaluation
of the expansion coefficients of the moments of high-order q-derivatives of such function
in terms of q-orthogonal polynomials—similar to those obtained by Karageorghis (1988a,
1988b), Phillips (1988), Doha (1991, 2002, 2003, 2004a, 2004b) and Doha and Ahmed
(2004, in press and submitted) for classical orthogonal polynomials of continuous and discrete
variables—are not known and traceless in the literature. This is in particular true for the
basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, and partially
motivates our interest in such polynomials. Another motivation is that the theoretical and
numerical analysis of numerous physical and mathematical problems very often require the
expansion of an arbitrary polynomial or the expansion of an arbitrary function with its q-
derivatives and moments into a set of q-classical orthogonal polynomials. This is also true
for the q-Hahn class. They are important in certain problems of mathematical physics; for
example, the development in quantum groups has led to the so-called q-harmonic oscillators
(see for instance, Macfarlane (1989), Biedenharn (1989), Kulish and Damaskinsky (1990) and
Askey and Suslov (1993a)). The known models of q-oscillators are closely related with q-
orthogonal polynomials. The q-analogues of boson operators have been introduced explicitly
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in Askey and Suslov (1993a), where the corresponding wave functions were constructed in
terms of the continuous q-Hermite polynomials of Rogers (see Rogers (1894) and Askey and
Ismail (1983, p 55)), in terms of the Stieltjes–Wigert polynomials (Stieltjes (1894), (1895) and
Wigert (1923)) and in terms of q-Charlier polynomials of Al-Salam and Carlitz (1965). Askey
and Suslov (1993b) have shown that Al-Salam–Carlitz I polynomials are closely connected
with the q-harmonic oscillator.

The main aim of the present paper is to show that the ideas given in Doha (1991, 2002,
2003, 2004a, 2004b), Doha and Ahmed (2004, in press and submitted) can be extended to
the q-orthogonal polynomials. This approach only requires the knowledge of the so-called
structure and three-term recurrence relations for the q-orthogonal polynomials.

The paper is organized as follows. In section 2, we give some relevant properties of Al-
Salam–Carlitz I polynomials. In section 3, we prove a theorem which relates Al-Salam–Carlitz
I expansion coefficients of the q-derivatives of a function in terms of its original expansion
coefficients. Explicit expressions for the q-derivatives of Al-Salam–Carlitz I polynomials of
any degree and for any order as a linear combination of suitable Al-Salam–Carlitz I polynomials
themselves are also deduced. In section 4, we prove a theorem which gives the Al-Salam–
Carlitz I expansion coefficients of the moments of one single Al-Salam–Carlitz I polynomial of
any degree. Another theorem which expresses the Al-Salam–Carlitz I expansion coefficients of
the moments of a general-order q-derivative of an arbitrary function in terms of its Al-Salam–
Carlitz I original expansion coefficients is also stated. In section 5, we give an application
of these theorems which provides an algebraic symbolic approach (using Mathematica) in
order to build and solve recursively for the connection coefficients between Al-Salam–Carlitz
I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to
the q-Hahn class.

2. Some properties of Al-Salam–Carlitz I polynomials

The families of q-orthogonal polynomials belonging to the q-Hahn class satisfy second-order q-
difference equation, and also have the property that their derivatives form orthogonal systems.
The Al-Salam–Carlitz I polynomials,

{
U(α)

n (x; q)
}
, a family of q-orthogonal polynomials with

these two properties, were introduced by Al-Salam and Carlitz (1965). The interested reader
is referred to the book of Gasper and Rahman (1990, pp 3–6) and Koekoek and Swarttouw
(1998, pp 113–114), for a brief background, definitions for some terminology and most of the
basic properties of Al-Salam–Carlitz I polynomials.

The following two recurrence relations (which may be found in Koekoek and Swarttouw
(1998), p 113, equations (3.24.4) and (3.24.7)) are of fundamental importance in developing
the present work. These are as follows:

(i) Recurrence relation

xU(α)
n (x; q) = U

(α)
n+1(x; q) + βnU

(α)
n (x; q) + γnU

(α)
n−1(x; q), n � 0,

(1)
U

(α)
0 (x; q) = 1, U

(α)
−1 (x; q) = 0,

where βn = (α + 1)qn and γn = −αqn−1(1 − qn).

(ii) Structure formula

U(α)
n (x; q) = 1

[n + 1]q
DqU

(α)
n+1(x; q), n � 0, (2)

where the q-derivative operator Dq and the q-analogues of the real numbers, [x]q, are
defined (Hahn 1949) by
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Dqf (x) :=



f (qx) − f (x)

(q − 1)x
, x �= 0,

f ′(0), x = 0, provided f ′(0) exists,
(3)

[x]q :=



1 − qx

1 − q
, x �= 0,

0, x = 0.

(4)

3. Relation between the coefficients a(p)
n and an and the pth q-derivative of U (α)

n (x; q)

The main result of this section is to prove the following theorem which expresses explicitly the
Al-Salam–Carlitz I expansion coefficients, a(p)

n , of a general-order q-derivative of an infinitely
q-differentiable function in terms of its original Al-Salam–Carlitz I coefficients, an.

Theorem 1. If we are given a regular function f (x) which is formally expanded in an infinite
series of Al-Salam–Carlitz I polynomials,

f (x) =
∞∑

n=0

anU
(α)
n (x; q), (5)

and for the pth q-derivative of f (x),

Dp
q f (x) =

∞∑
n=0

a(p)
n U(α)

n (x; q), a(0)
n = an, (6)

then

a(p)
n = [p]q!

[
n + p

n

]
q

an+p, n � 0, (7)

and clearly

Dp
q U(α)

n (x; q) = [p]q!

[
n

n − p

]
q

U
(α)
n−p(x; q), n, p � 0, (8)

where

[p]q! :=
p∏

j=1

[j ]q = (q; q)p

(1 − q)p
.

Proof. In view of (6), we have

Dp+1
q f (x) =

∞∑
n=0

a(p+1)
n U(α)

n (x; q), (9)

and on differentiating (6), and making use of (2), we get

Dp+1
q f (x) =

∞∑
n=0

a(p)
n DqU

(α)
n (x; q) =

∞∑
n=0

[n + 1]qa
(p)

n+1U
(α)
n (x; q). (10)

From (9) and (10), we get immediately

a(p+1)
n = [n + 1]qa

(p)

n+1, n � 0.
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It can easily be shown that

a(p)
n =


 p∏

j=1

[n + j ]q


 an+p = [p]q!

[
n + p

n

]
q

an+p, n � 0,

which proves (7). The proof of formula (8) is clear, which completes the proof of theorem 1.
�

4. Explicit formula for the expansion coefficients of the moments of Dp
qf (x)

For the evaluation of the expansion coefficients of x�D
p
q f (x) as expanded in series of

Al-Salam–Carlitz I polynomials, the following theorem is needed.

Theorem 2. The expansion of the moments of one single Al-Salam–Carlitz I polynomial of
any degree in terms of Al-Salam–Carlitz I themselves is given by

xmU
(α)
j (x; q) =

2m∑
n=0

amn(j)U
(α)
j+m−n(x; q), m � 0, j � 0, (11)

where

amn(j) =
j∑

i=max(j−n,0)

(−α)j−iq(
j−i

2 )

[
j

i

]
q

b
(m+i)
m+j−n1φ1

[
q−(j−i)

0

∣∣∣∣q; q

α

]
, (12)

b(m)
n =

[
m

n

]
q

m−n∑
r=0

[
m − n

r

]
q

αr .

The following lemma is needed to proceed with the proof of the theorem.

Lemma 1. It can be shown that the coefficients amn(j) of (12), satisfy the recurrence relation

amn(j) = am−1,n(j) + βj+m−nam−1,n−1(j) + γj+m−n+1am−1,n−2(j),

n = 0, 1, . . . , 2m, (13)

with

a0,0(j) = 1, am−1,−�(j) = 0, ∀� > 0, am−1,r (j) = 0, r = 2m − 1, 2m.

Proof. Substitution of relation (12) into the rhs of (13), and after performing some slight
manipulation, yields the lhs of (13), which completes the proof of lemma 1. �

Proof of Theorem 2. To prove this theorem we proceed by induction. In view of recurrence
relation (1), we may write

xU
(α)
j (x; q) = a10(j)U

(α)
j+1(x; q) + a11(j)U

(α)
j (x; q) + a12(j)U

(α)
j−1(x; q), (14)

and this in turn shows that (11) is true for m = 1. Proceeding by induction, assuming that (11)
is valid for m, we want to prove that

xm+1U
(α)
j (x; q) =

2m+2∑
n=0

am+1,n(j)U
(α)
j+m−n+1(x; q). (15)
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From (14) and assuming the validity for m, we have

xm+1U
(α)
j (x; q) =

2m∑
n=0

amn(j)
[
a10(j + m − n)U

(α)
j+m−n+1(x; q)

+ a11(j + m − n)U
(α)
j+m−n(x; q) + a12(j + m − n)U

(α)
j+m−n−1(x; q)

]
.

Collecting similar terms, we get

xm+1U
(α)
j (x; q) = am0(j)a10(j + m)U

(α)
j+m+1(x; q)

+ [am1(j)a10(j + m − 1) + am0(j)a11(j + m)]U(α)
j+m(x; q)

+
2m∑
n=2

[amn(j)a10(j + m − n) + am,n−1(j)a11(j + m − n + 1)

+ am,n−2(j)a12(j + m − n + 2)]U(α)
j+m−n+1(x; q)

+ [am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)]U(α)
j−m(x; q)

+ am,2m(j)a12(j − m)U
(α)
j−m−1(x; q). (16)

Application of lemma 1 given in (13) to equation (16) yields equation (15) and the proof of
the theorem is complete.

Note. It is to be noted here that relation (1) is equivalent to

xU = CU,

where U is the vector
(
U

(α)
0 , U

(α)
1 , . . .

)T
and C = (

c
(1)
ij

)
is a tridiagonal matrix whose entries

have the form

c
(1)
ij = a1,i−j+1(i), i, j � 0,

and accordingly relation (11) is equivalent to

xmU = CmU,

where Cm = (
c
(m)
ij

)
is a band matrix of width m whose entries are given explicitly by

c
(m)
ij = am,i−j+m(i), i, j � 0.

According to theorem 2, we can state the following theorem which relates the Al-
Salam–Carlitz I coefficients of the moments of a general-order q-derivative of an infinitely
q-differentiable function in terms of its Al-Salam–Carlitz I coefficients.

Theorem 3. Assume that f (x), D
p
q f (x) and x�U

(α)
j (x; q) have the Al-Salam–Carlitz I

expansions (5), (6) and (11) respectively, and assume also that

x�

( ∞∑
i=0

a
(p)

i U
(α)
i (x; q)

)
=

∞∑
i=0

b
p,�

i U
(α)
i (x; q), (17)

then the connection coefficients b
p,�

i are given by

b
p,�

i =




∑�−1
k=0 a�,k+�−i (k)a

(p)

k +
∑i

k=0 a�,k+2�−i (k + �)a
(p)

k+�, 0 � i � �,∑�−1
k=i−� a�,k+�−i (k)a

(p)

k +
∑i

k=0 a�,k+2�−i (k + �)a
(p)

k+�, � + 1 � i � 2� − 1,∑i
k=i−2� a�,k+2�−i (k + �)a

(p)

k+�, i � 2�.

(18)
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5. Recurrence relations for connection coefficients between Al-Salam–Carlitz I and
monic q-polynomials belonging to the q-Hahn tableau

Let f (x) has the expansion (5), and assume that it satisfies the nonhomogeneous linear
q-difference equation of order n

n∑
i=0

pi(x)Di
qf (x) = g(x), (19)

where p0, p1, . . . , pn �= 0 are polynomials in x, and the coefficients of Al-Salam–Carlitz I
series of the function g(x) are known, then formulae (7), (11) and (18) enable one to construct
in view of (19) the linear recurrence relation of order r,

r∑
j=0

αj (k)ak+j = β(k), k � 0, (20)

where α0, α1, . . . , αr(α0 �= 0, αr �= 0) are polynomials of the variable k.
In this section, we consider the problem of determining the connection coefficients

between different polynomial systems. An interesting question is how to transform the
Fourier coefficients of a given polynomial corresponding to an assigned orthogonal basis into
the coefficients of another basis orthogonal with respect to a different weight function. The
aim is to determine the so-called connection coefficients of the expansion of any element of
the first basis in terms of the elements of the second basis. Suppose V is a vector space of
all polynomials over the real or complex numbers and Vm is the subspace of polynomials
of degree less or equal to m. Suppose p0(x), p1(x), p2(x), . . . is a sequence of polynomials
such that pn(x) is of exact degree n; let q0(x), q1(x), q2(x), . . . be another such sequence.
Clearly, these sequences form a basis for V . It is also evident that p0(x), p1(x), . . . , pm(x)

and q0(x), q1(x), . . . , qm(x) give two bases for Vm. While working with finite-dimensional
vector spaces, it is often necessary to find the matrix that transforms a basis of a given space
to another basis. This means that one is interested in the connection coefficients ai(n) that
satisfy

Qn(x) =
n∑

i=0

ai(n)Pi(x). (21)

The choice of Pn(x) and Qn(x) depends on the situation. For example, suppose

Pn(x) = xn, Qn(x) = (x; q)n,

then the connection coefficients ai(n) are given by (see Gasper and Rahman (1990))

ai(n) =
[
n

i

]
q

(−1)iqi(i−1)/2.

If the roles of these Pn(x) and Qn(x) are interchanged, then we get (see Area et al (1999),
p 774, equation (3.3))

ai(n) =
[
n

i

]
q

(−1)iqi(i+1−2n)/2.

It is known that all the polynomials belonging to the q-Hahn tableau (see Koornwinder
(1994)) are eigenfunctions of a second-order q-difference equation which can be written as

σ(x)DqD1/qy(x) + τ(x)Dqy(x) + λn,qy(x) = 0, (22)
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where the expressions of σ(x) and τ(x) are polynomials in x of degree at most 2 and exactly
1, respectively, and λn,q = [n]q

(
1
2 [1 − n]qσ ′′ − τ ′) (see Lewanowicz et al (2000), formula

(3.2)). In equation (22), replacing x by qx gives

σ(qx)(DqD1/qy)(qx) + τ(qx)(Dqy)(qx) + λn,qy(qx) = 0. (23)

In view of (3), we can deduce the following three relations:

y(qx) = y(x) + (q − 1)xDqy(x), (24)

(DqD1/qy)(qx) = q−1D2
qy(x), (25)

(Dqy)(qx) = Dqy(x) + (q − 1)xD2
qy(x). (26)

Substitution of (24)–(26) into (23) gives

σ̃ (x)D2
qy(x) + τ̃ (x)Dqy(x) + λn,qy(x) = 0, (27)

where σ̃ (x) = q−1σ(qx) + (q − 1)xτ(qx) and τ̃ (x) = τ(qx) + λn,q(q − 1)x.

5.1. Big q-Jacobi–Al-Salam–Carlitz I connection problem

The link between monic big q-Jacobi polynomials, Pn(x; a, b, c; q) and U
(α)
i (x; q) given by

(21) can easily be replaced by a linear relation involving only U
(α)
i (x; q) using the big q-Jacobi

polynomials q-difference equation, namely,

[aq2(q − 1)(qx − 1)(bqx − c)D2
q − q2{(q−n + abq(−1 − q + qn))x

+ (−c + a(−1 + (b + c)q))}Dq − q2[n]q(abq − q−n)]Pn(x; a, b, c; q) = 0.

(28)

By substituting

Pn(x; a, b, c; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (29)

and by virtue of formula (17), equation (28) takes the form

ac(q − 1)2q2b
2,0
i − aq3(q − 1)2(b + c)b

2,1
i + ab(q − 1)2q4b

2,2
i

+ q2(q − 1)(c − a((b + c)q − 1))b
1,0
i

+ (1 − q)q2(q−n + abq(qn − q − 1))b
1,1
i

+ q2−n(qn − 1)(1 − abqn+1)b
0,0
i = 0.

By making use of formulae (11) and (18), we obtain

q2−n(q − 1)−2(qn − 1)(1 − abqn+1)ai(n) − q2−n(q − 1)−1[1 + abqn+1(qn − q − 1)]a(1)
i−1(n)

+ q2−n(q − 1)−1[qn(a + c − a(b + c)q)

− qi(1 + abqn+1(qn − q − 1))(α + 1)]a(1)
i (n)

+ α(q − 1)−1q2−n+i (1 − qi+1)[1 + abqn+1(qn − q − 1)]a(1)
i+1(n)

+ abq4a
(2)
i−2(n) − aq3[c − b(qi(1 + q)(1 + α) − 1)]a(2)

i−1(n)

+ aq2[c − qi+1(b + c + (c + b(2 + q))α)

+ bq2i+1(α + q(1 + α(2 + q + α)))]a(2)
i (n)

+ aαqi+3(1 − qi+1)[c − b(qi+1(1 + q)(1 + α) − 1)]a(2)
i+1(n)

+ abα2q2i+5(1 − qi+1)(1 − qi+2)a
(2)
i+2(n) = 0, i � 0. (30)
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Using formula (7) with (30)—and after some slight manipulation—we obtain the following
recurrence relation,

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0,
(31)

i = n − 1, n − 2, . . . , 0,

where

δi0 = (qn − qi)(abqn+i+1 − 1),

δi1 = qn(1 − qi+1)[a + c + abq2i+1(1 + q)(1 + α)

− qi−n(1 + α + abq2n+1(1 + α) + a(b + c)qn+1)],

δi2 = −(qi+1; q)2[−qiα − αabq2n+i+1

+ qn(c + aqi+1(qi(α + q(1 + α(2 + q + α)))b − (1 + α)(b + c)))],

δi3 = αaqn+i+1(qi+1; q)3[−(b + c) + bqi+1(1 + q)(1 + α)b],

δi4 = −abα2qn+2i+3(qi+1; q)4,

with an+s(n) = 0, s = 1, 2, 3 and an(n) = 1. The solution of (31) is

ai(n) = (−1)i(aq, cq; q)n

(abqn+1; q)n

(q−n, abqn+1; q)iq
(

i+1
2 )

(aq, cq; q)i(q; q)i

×
n−i∑
j=0

(−qi+1)j q(
j

2 )(q−n+i , abqn+i+1; q)j rj (α)

(q; q)j (aqi+1, cqi+1; q)j

× 3φ2

[
q−n+i+j , abqn+i+j+1, 0
aqi+j+1, cqi+j+1

∣∣∣∣q; q

]
, i = 0, 1, . . . , n, (32)

where

rj (α) =
j∑

m=0

[
j

m

]
q

αm. (33)

The monic big q-Laguerre polynomials, Pn(x; a, b; q), and the monic big q-Jacobi
polynomials are related by

Pn(x; a, b; q) = Pn(x; a, 0, b; q), (34)

while the monic q-Hahn polynomials, Qn(x; a, b,N; q), can be obtained from the monic big
q-Jacobi polynomials by using the relation

Qn(x; a, b,N; q) = Pn(x; a, b, q−N−1; q), (35)

and accordingly, the connection problems monic big q-Laguerre–Al-Salam–Carlitz I and
monic q-Hahn–Al-Salam–Carlitz I can be deduced with the aid of relations (34) and (35),
respectively, with relation (29).

Corollary 1. In the connection problem

Pn(x; a, b; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (36)

the expansion coefficients ai(n) are given by

ai(n) = (−1)i(aq, bq; q)n(q
−n; q)iq

(
i+1
2 )

(aq, bq; q)i(q; q)i

×
n−i∑
j=0

(−qi+1)j q(
j

2 )(q−n+i; q)j rj (α)

(q; q)j (aqi+1, bqi+1; q)j
3φ2

[
q−n+i+j , 0, 0
aqi+j+1, bqi+j+1

∣∣∣∣q; q

]
,

i = 0, 1, . . . , n, (37)
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while in the connection problem

Qn(x; a, b,N; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (38)

the expansion coefficients ai(n) are given by

ai(n) = (aq, q−N ; q)n

(abqn+1; q)n

(−1)i(q−n, abqn+1; q)iq
(

i+1
2 )

(aq, q−N ; q)i(q; q)i

×
n−i∑
j=0

(−qi+1)j q(
j

2 )(q−n+i , abqn+i+1; q)j rj (α)

(q; q)j (aqi+1, qi−N ; q)j

× 3φ2

[
q−n+i+j , abqn+i+j+1, 0
aqi+j+1, qi+j−N

∣∣∣∣q; q

]
, i = 0, 1, . . . , n. (39)

The monic q-Meixner polynomials, Mn(x; b, c; q), can be obtained from the monic q-
Hahn polynomials by using the relation

lim
N→∞

Qn(x; b,−b−1c−1q−N−1, N; q) = Mn(x; b, c; q), (40)

and in view of the limiting relation

lim
N→∞

(αq−N ; q)n

(βq−N ; q)n
= (α/β)n, (41)

we obtain the following corollary as a consequence of the two relations (38) and (40).

Corollary 2. In the connection problem

Mn(x; b, c; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (42)

the coefficients ai(n) are given by

ai(n) = (−1)n(bq; q)n(q
−n; q)ic

n−iq(
i+1
2 )

(bq; q)i(q; q)iqn(n−i)

n−i∑
j=0

(qn+i+1/c)j (q−n+i; q)jq
(

j

2 )rj (α)

(q; q)j (bqi+1; q)j

× 2φ1

[
q−n+i+j , 0
bqi+j+1

∣∣∣∣q;−qn+1

c

]
, i = 0, 1, . . . , n. (43)

The monic q-Meixner polynomials and the monic q-Charlier polynomials, Cn(x; a; q),
are related by

Mn(x; 0, a; q) = Cn(x; a; q), (44)

and in view of the two identities,

2φ1

[
c, 0
d

∣∣∣∣q; z

]
d=0= 1φ0

[
c

−
∣∣∣∣q; z

]
and

1φ0

[
q−n

−
∣∣∣∣q; z

]
= (zq−n; q)n, n = 0, 1, 2, . . . ,

(see Koekoek and Swarttouw (1998), p 14, equation (0.5.3)), we obtain the following corollary
as a consequence of the two relations (42) and (44).
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Corollary 3. In the connection problem

Cn(x; a; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (45)

the coefficients ai(n) are given by

ai(n) = (−1)n(q−n; q)ia
n−iq(

i+1
2 )

(q; q)iqn(n−i)

×
n−i∑
j=0

(qn+i+1/a)j

(q; q)j

(q−n+i; q)j (−qi+j+1a−1; q)n−i−j

q−(
j

2 )
rj (α), i = 0, 1, . . . , n. (46)

The monic q-Krawtchouk polynomials, Kn(x;p,N; q), may be obtained from the monic
q-Hahn polynomials by using the limiting relation

lim
a→0

Qn(x; a,−pa−1q−1, N; q) = Kn(x;p,N; q), (47)

and in view of the identity

3φ2

[
b, c, 0
d, e

∣∣∣∣q; z

]
e=0= 2φ1

[
b, c

d

∣∣∣∣q; z

]
,

and the q-analogues of the Vandermonde summation formula

2φ1

[
q−n, b

c

∣∣∣∣q; q

]
= (b−1c; q)n

(c; q)n
bn, n = 0, 1, 2, . . . ,

(see Koekoek and Swarttouw (1998), p 15, equation (0.5.9)), we get the following corollary
as a consequence of the two relations (38) and (47).

Corollary 4. In the connection problem

Kn(x;p,N; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (48)

the coefficients ai(n) are given by

ai(n) = (−1)n(q−N ; q)n(q
−n,−pqn; q)i(−p−1q−n−N ; q)n−iq

(
i+1
2 )(pqn+i )n−i

(−pqn; q)n(q−N ; q)i(qi−N ; q)n−i (q; q)i

×
n−i∑
j=0

(qN+1)j (q−n+i ,−pqn+i; q)j

(q; q)j (−pqN+i+1; q)j
rj (α), i = 0, 1, . . . , n. (49)

5.2. Little q-Jacobi–Al-Salam–Carlitz I connection problem

In this problem

pn(x; a, b|q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (50)

where pn(x; a, b|q) are monic little q-Jacobi polynomials, which satisfy the q-difference
equation

[a(q − 1)qx(bq2x − 1)D2
q + {q(−q−n + abq(1 + q − qn))x + 1 − aq}Dq

− q(abq − q−n)[n]q]pn(x; a, b|q) = 0,
(51)



10118 E H Doha and H M Ahmed

the coefficients ai(n) satisfy the recurrence relation

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0,

i = n − 1, n − 2, . . . , 0, (52)

where

δi0 = (qn − qi)(abqn+i+1 − 1),

δi1 = (1 − qi+1)[qn−1 + abqn+2i+1(1 + q)(1 + α) − qi(1 + α + aqn + abq2n+1(1 + α))],

δi2 = −qn+i (qi+1; q)2[−q−nα − a(1 + α) − αabqn+1 + abqi+1(α + q(1 + α(2 + q + α)))],

δi3 = αaqn+i (qi+1; q)3[−1 + bqi+2(q + 1)(α + 1)], δi4 = −abα2qn+2i+3(qi+1; q)4,

with an+s(n) = 0, s = 1, 2, 3 and an(n) = 1. The solution of (52) is

ai(n) = (−1)nq(
n

2 )+i (aq; q)n(q
−n, abqn+1; q)i

(abqn+1; q)n(aq; q)i(q; q)i

n−i∑
j=0

qj (q−n+i , abqn+i+1; q)j

(q; q)j (aqi+1; q)j
rj (α),

i = 0, 1, . . . , n. (53)

The monic little q-Laguerre polynomials, pn(x; a|q), and the monic little q-Jacobi
polynomials are related by

pn(x; a|q) = pn(x; a, 0|q), (54)

while the monic alternative q-Charlier, Kn(x; b; q), can be deduced from the monic little
q-Jacobi polynomials by using the limiting relation

lim
a→0

pn(x; a,−b/aq|q) = Kn(x; b; q), (55)

and accordingly, the connection problems monic little q-Laguerre–Al-Salam–Carlitz I and
monic alternative q-Charlier–Al-Salam–Carlitz I can be deduced with the aid of relations (54)
and (55), respectively, with relation (50).

Corollary 5. The link between monic little q-Laguerre–Al-Salam–Carlitz I connection problem
is given by

pn(x; a|q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (56)

where

ai(n) = (−1)nq(
n

2 )+i (aq; q)n(q
−n; q)i

(aq; q)i(q; q)i

n−i∑
j=0

qj (q−n+i; q)j

(q; q)j (aqi+1; q)j
rj (α), i = 0, 1, . . . , n,

(57)

while the link between monic alternative q-Charlier–Al-Salam–Carlitz I connection problem
is given by

Kn(x; b; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (58)

where

ai(n) = (−1)nq(
n

2 )+i (q−n,−bqn; q)i

(−bqn; q)n(q; q)i

n−i∑
j=0

qj (q−n+i ,−bqn+i; q)j

(q; q)j
rj (α),

i = 0, 1, . . . , n. (59)
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Table 1. Polynomials σ(x) and τ(x) in the q-difference equation (22) for the cases of Al-Salam–
Carlitz I, II, q-Laguerre and Stieltjes–Wigert.

Family σ(x) τ(x)

Al-Salam–Carlitz I U
(α)
n (x; q) (x − 1)(x − α) x−α−1

1−q

Al-Salam–Carlitz II V
(α)
n (x; q) α x−α−1

q−1

q-Laguerre L
(α)
n (x; q) x 1−qα+1(x+1)

(1−q)

Stieltjes–Wigert Sn(x; q) x qx−1
q−1

Table 2. Formulae for the connection coefficients in problem (60) for monic Al-Salam–Carlitz I,
II, q-Laguerre and Stieltjes–Wigert polynomials, respectively.

pn(x; q) ai(n) (0 � i � n)

U
(β)
n (x; q) αn−i (qi+1;q)n−i (β/α;q)n−i

(q;q)n−i

V
(β)
n (x; q) (−1)n

βn−i (q−n;q)i q
in−(

n
2 )

(q;q)i
×

∑n−i
j=0

(qn/β)j (qi−n;q)j rj (α)

(q;q)j
2φ0

[
q−(n−i−j), 0

−
∣∣∣q; qn−i−j

β

]

L
(β)
n (x; q) (−1)n

q(
i+1
2 )

q(n−i)(n+β)

(qβ+1;q)n(q−n;q)i
(qβ+1;q)i (q;q)i

∑n−i
j=0

q(n+β+i+1)j (q−n+i ;q)j q
(
j
2 )

(q;q)j (qβ+i+1;q)j
rj (α)

Sn(x; q) (−1)n
q(

i+1
2 )

qn(n−i)

(q−n;q)i
(q;q)i

∑n−i
j=0

q(n+i+1)j (q−n+i ;q)j q
(
j
2 )

(q;q)j
rj (α)

Remark 1. The expressions of σ(x) and τ(x) in equation (22) and the formulae of connection
coefficients, ai(n), appearing in the connection problem

pn(x; q) =
n∑

i=0

ai(n)U
(α)
i (x; q), (60)

for most of the remaining monic polynomial families, {pn(x; q)}, inside the q-Hahn tableau
are summarized in tables 1 and 2.

Remark 2. The expansions and connection coefficients in series of discrete q-Hermite
polynomials of the first kind, hn(x; q), can be obtained directly from those of the Al-Salam–
Carlitz I polynomials U(α)

n (x; q), by taking α = −1, and taking into account the Gauss
identities

rj (−1) =
{
(q; q2)j/2, j even,

0, j odd,

(see Kac and Cheung (2002), formulae (7.14) and (7.15)).

Remark 3. It is to be noted that one of our goals is to emphasize the systematic character and
simplicity of our algorithm, which allows one to implement it in any computer algebra (here
the Mathematica (1999) symbolic language has been used).

To end this paper, we wish to report that this work deals with formulae associated with the
Al-Salam–Carlitz I coefficients for the moments of D

p
q f (x), p = 0, 1, 2, . . . , and with the

connection coefficients between each family belonging to the q-Hahn tableau and Al-Salam–
Carlitz I polynomials. These formulae can be used to facilitate greatly the setting up of the
algebraic systems to be obtained by applying the spectral methods for solving q-difference
equations with polynomials coefficients of any order.
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Notes in Mathematics vol 1171) ed C Brezinski et al (Berlin: Springer) pp 33–62

Area I, Godoy E, Ronveaux A and Zarzo A 1998 Minimal recurrence relations for connection coefficients between
classical orthogonal polynomials: discrete case J. Comput. Appl. Math. 89 309–25

Area I, Godoy E, Ronveaux A and Zarzo A 1999 Inversion problems in the q-Hahn tableau J. Symb.
Comput. 28 767–76

Askey R and Ismail M E H 1983 A generalization of ultraspherical polynomials Studies in Pure Mathematics
ed P Erdös (Basle: Birkhäuser) pp 55–78
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